Afrifa-Yamoah, E, Mueller, UA, Taylor, SM, Fisher, AJ (2020). Missing data imputation of high-resolution temporal climate time series data, Meteorological Applications,
https://doi.org/10.1002/met.1873.
Almendra-martin, L, Martinez-Fernandez, J, Piles, M, Gonzalez-Zamora, A. (2021). Comparison of gap-filling techniques applied to the CCI soil moisture database in Southern Europe, Remote Sensing of Environment. 258
https://doi.org/10.1016/j.rse.2021.112377.
Baddoo, TD, Li, Z, Odai, SN, Boni, K.R.C., Nooni, I.K., Andam-Akorful, S.A.. (2021). Comparison of missing data infilling mechanisms for recovering a real-world single station streamflow observation, International J. of Environmental research and Public Health. 18:
https://doi.org/10.3390/ijerph18168375.
Bellido-Jimenez, J.A., Gualda, J.E., Garcia-Marin, A.P (2021). Assessing machine learning models for gap-filling daily rainfall series in a semiarid region of Spain, Atmosphere, 12, 1158
https://doi.org/10.3390/atmos12091158.
Cho, HY, Oh, JH, Kom, KO, Shin, JS (2013). Outlier detection and missing data filling methods for coastal water temperature data, J. of Coastal Research, (Special Issue No. 65):1898-1903.
Hair, J.F. Jr, Black, W.C., Babin, B.J., Anderson, R.E.. (2010). Multivariate Data Analysis, A Global Perspective. Seventh Edition. Chapter 2. Pearson.
Kandasamy, S., Baret, F., Verger, A., Neveux, P., Weiss, M (2013). A comparison of methods for smoothing and gap filling time series of remote sensing observations - application to MODIS LAI products, Biogeosciences, 10, 4055-4071
https://doi.org/10.5194/bg-10-4055-2013.
Kang, M., Ichii, K., Kim, J., Indrawati, Y.M., Park, J., Moon, M., Lim, J.-H., Chun, J.-H (2019). New gap-filling strategies for long-period flux data gaps using a data-driven approach, Atmosphere, 10, 568
https://doi.org/10.3390/atmos10100568.
Liu, X, Wang, M. (2019). Filling the gaps of missing data in the merged VIIRS SNPP/NOAA-20 ocean color product using DINEOF method, Remote Sensing. 11
https://doi.org/10.3390/rs11020178.
Millard, SP. (2013). EnvStats: An R Package for Environmental Statistics. Springer, New York.
Golyandina, N., Korobeynikov, A (2014). Basic Singular Spectrum Analysis and Forecasting with R, Computational Statistics and Data Analysis, 71, 934-954.
Fredj, E., Roarty, H., Kohut, J., Smith, M., Glenn, S (2016). Gap filling of the coastal ocean surface currents from HFR data: Application to the Mid-Atlantic Bight HFR Network, Journal of Atmospheric and Oceanic Technology, 33(6):1097-1111.
Rumaling, M.I., Chee, F.P., Dayou, J., Chang, J.H.W., Kong, S.S.K., Sentian, J (2020). Missing value imputation for PM
10 concentration in Sabah using nearest neighbour method (NNM) and expectation-maximization (EM) algorithm, Asian Journal of Atmospheric Environment, 14(1):62-72
https://doi.org/10.5572/ajae.2020.14.1.062.
Sarafanov, M, Kazakov, E, Nikitin, NO, Kalyuzhnaya, AV. (2020). A machine learning approach for remote sensing data gap-filling with open-source implementation: An example regarding land surface temperature, surface albedo and NDVI, Remote Sensing. 12
https://doi.org/10.3390/rs12233865.
Sattari, M.T., Falsafian, K., Irvem, A., Shahav, S., Qasem, S.N (2020). Potential of kernel and tree-based machine-learning models for estimating missing data of rainfall, Engineering Applications of Computational Fluid Mechanics, 14(1):1078-1094
https://doi.org/10.1080/19942060.2020.1803971.
Sim, J, Lee, JS, Kwon, B (2015). Missing values and optimal selection of an imputation method and classfication algorothm to improve the accuracy of ubiquitous computing applications, Mathematical Problems in Engineering, 2015
http://dx.doi.org/10.1155/2015/538613.
Wand, MP, Jones, MC. (1995). Kernel Smoothing: Chapman and Hall, London.
Wang, G, Ma, M, Jinag, L, Chen, F, Xu, L. (2021). Multiple imputation of marine search and rescue data at multiple miss-ingpatterns, PLOS ONE. 16(6):
https://doi.org/10.1371/journal.pone.0252129.
Zhao, X, Huang, Y. (2015). A comparison of the three gap filling techniques for eddy covariance net carbon fluxes in short vegetation ecosystems, 2015
http://dx.doi.org/10.1155/2015/260580.