Ahn, K.M (1996). The digital simulation of non-linear random waves, Coastal Engineering, 1996, 657-667.
Berkhoff, J.C.W (1972). Computation of combined refraction—diffraction, Coastal Engineering, 1973, 471-490.
Biesel, F, Suquet, F. (1951). Les apparails generateurs de houle en laboratoire, La Houille Blanche, 6, 2, 4 and 5. Laboratory Wave Generating Apparatus English version Project report 39 St Anthony Falls Hydraulic Laboratory, Minnesota University Minneapolis [1953]..
Cayley, A. (1895). An elementary treatise on elliptic functions. 2nd ed. London: G Bell.
Cho, Y.J., Kang, Y.K (2017). The Effect of Skewness of Nonlinear Waves on the Transmission Rate through a Porous Wave Breaker, Journal of Korean Society of Coastal and Ocean Engineers, 29(6):1-13.
Flick, R.E., Guza, R.T., Inman, D.L (1981). Elevation and velocity measurements of laboratory shoaling waves, Journal of Geophysical Research, 86, 4149-4160.
Frigaard, P, Anderson, TL. (2010). Technical Background Material for the Wave Generation Software AwaSys 5, DCE Technical Reports No. 64. Aalborg University.
Goda, Y. (1985). Random seas and design of maritime structures. University of Tokyo Press.
Izadparast, A, Niedzwecki, J. (2012). Application of semi-empirical probability distributions in wave-structure interaction problems. ASME 2012 Fluid Engineering Division Summer Meeting collocated with the ASME 2012 Heat transfer Summer conference and the ASME 2012 10th International Conference, Vol. 1: Symposia, Part A and B..
Jung, T.H., Ryu, Y.U (2012). Treatment of Inclined Boundaries in a Finite Element Model for the Mild-Slope Equation, Journal of Korean Society of Coastal and Ocean Engineers, 24(2):84-88.
Lara, J.L., Garcia, N., Losada, I.J (2006). RANS modelling applied to random wave interaction with submerged permeable structures, Coastal Engineering, 53, 395-417.
Lara, J.L., Losada, I.J., Guanche, R (2008). Wave interaction with low mound breakwaters using a RANS model, Ocean Eng, 35, 1388-1400.
Lara, J.L., Ruju, A., Losada, I.J (2011). Reynolds Averaged Navier-Stokes modelling of long waves induced by a transient wave group on a beach, Proceedings of the Royal Society A, 467, 1215-1242.
Lara, J.L., Del Jesus, M., Losada, I.J (2012). Three-dimensional interaction of waves and porous structures. Part II: Model validation, Coast. Eng, 64, 26-46.
Losada, I.J., Gonzalez-Ondina, J.M., Diaz, G., Gonzalez, E.M (2008). Numerical simulation of transient nonlinear response of semi-enclosed water bodies: model description and experimental validation, Coastal Engineering, 55(1):21-34.
Monaghan, J.J (1994). Simulating free surface flows with SPH, Journal of Computational Physics, 110(2):399-406.
Monaghan, J.J., Kos, A (1999). Solitary waves on a Cretan beach, Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(3):145-155.
Monaghan, J.J., Kos, A (2000). Scott Russell’s wave generator, Physics of Fluids, 12(3):622-630.
Peregrine, D.H (1967). Long waves on a beach, Journal of Fluid Mechanics, 27(4):815-827.
Phillips, OM. (1977). The dynamics of the upper ocean. 2nd ed. Cambridge University Press.
Shao, S (2010). Incompressible SPH flow model for wave interactions with porous media, Coast. Eng, 57(3):304-316.
Tayfun, M.A (1986). On narrow-band representation of ocean waves 1, theory, J. Geophys. Res, 91, 7743-7752.
Vanhoff, B., Elgar, S (1997). Simulating quadratically nonlinear random processes, International Journal of Bifurcation and Chaos, 7(06):1367-1374.
Wiegel, RL. (1964a). Oceanographical Engineering, Englewood Cliffs. New Jersey: Prentice Hall.
Wiegel, R.L (1964b). Water wave equivalent of Mach-reflection, Proc. 9th. Conf. Coastal Engng. A.S.C.E, 6, 82-102.